REACTIONS OF CARBON DISULPHIDE WITH PALLADIUM(0) COMPEEXES

DAVID H. FARRAR*, RAVI R. GUKATHASAN and KANE WON
Lash Miller Chemical Laboratortes, 80 St. George Street, Unwersity of Toronto, Toronto Ontario M5S 1A1 (Canada)

(Received May 21st, 1984)

Summary

The reaction of $\mathrm{PdL}_{n}\left(n=3, \mathrm{~L}=\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2} ; n=2, \mathrm{~L}=\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}, \mathrm{PCy}_{3}\right)$ with CS_{2} in hexanes results in precipitation of either $\mathrm{Pd}\left(\eta^{2}-\mathrm{CS}_{2}\right) \mathrm{L}_{2}\left(\mathrm{~L}=\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}\right.$, $\left.\mathrm{PCy}_{3}\right)$ or $\mathrm{Pd}_{2}\left(\mu-\mathrm{CS}_{2}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)$. The monomeric complexes $\mathrm{Pd}\left(\mathrm{CS}_{2}\right) \mathrm{L}_{2}$ are unstable in a CS_{2} solution and convert to the corresponding doubly CS_{2}-bridged dimeric complexes $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{~L}_{2}$. It is the steric bulk of the phosphine ligands that appears to control which type of product initially precipitates. Reaction of the trinuclear clusters $\mathrm{Pd}_{3}(\mathrm{CO})_{3} \mathrm{~L}_{3}$ with CS_{2} gives the dimeric complexes $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{~L}_{2}$. The molecular structure of $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}\right)_{2}$ has been determined by a single crystal X-ray analysis. Crystals of the complex are monoclinic, space group $P 2_{1} / c\left(a 10.373(2) b 13.684(1), c 12.173(2) \AA, \beta 94.04(7)^{\circ}\right)$ with two centrosymmetrically related dimers per unit cell. The final agreement indices (172 variables, 2071 reflections) are $R=0.032$ and $R_{\mathrm{w}}=0.038$. The $\operatorname{PPd}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{PdP}$ core is essentially planar with each CS_{2} ligand π-bonded through the $\mathrm{C}=\mathrm{S}$ linkage to one metal atom and σ-bonded to the other through the second S atom.

Introduction

There is an extensive coordination chemistry of carbon disulphide with the CS_{2} ligand exhibiting a variety of bonding modes [1]. Interest in the area has been stimulated by the versatility of this ligand and the belief that it may serve as a model for the activation of CO_{2}. Initial research by Baird and Wilkinson [2], and Mason and Rae [3] revealed that the Pd and Pt complexes $\mathrm{M}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ contained $\eta^{2}-\mathrm{CS}_{2}$

(a)

(b)

Where M is a N subgroup metal and L is a phosphine ligand
ligands (type a), and reported [2] the empirical formula of a Ni complex to be $\mathrm{Ni}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)$. The Ni complex was subsequently shown by X-ray crystallography [4] to be $\mathrm{Ni}_{2}\left(\mathrm{CS}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ with μ - CS_{2} ligands (type b).

There have been no examples of type a Ni complexes reported although attempts have been made to prepare them [1]. We have recently described [5] the preparation of Pd and Pt doubly CS_{2}-bridged dimeric complexes, type \mathbf{b}, by the reaction of the trinuclear complexes $\mathrm{M}_{3}(\mathrm{CO})_{3} \mathrm{~L}_{3}$ and CS_{2}. Complexes of Pd and Pt with type b stoichiometry have also been isolated from the reaction of metal-phosphine monomeric compounds and $\mathrm{CS}_{2}[6,7,8]$. We now report our results on the factors that determine which type of CS_{2} complex forms for Pd .

Experimental

All reactions were performed under an N_{2} atmosphere. Solvents were dried and distilled under N_{2} prior to use. $\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}$ was purchased from Strem Chemicals Inc, while $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}$ and $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$ were synthesised by literature methods [9-11] as were PdL_{2} [12] (where $\mathrm{L}=\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}, \mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}$ and PCy_{3}), $\mathrm{Pd}_{3}(\mathrm{CO})_{3} \mathrm{~L}_{3}$ [12] (where $\mathrm{L}=$ $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}, \mathrm{PCy}_{3}$ and $\left.\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}\right)$ and $\mathrm{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ [2]. The IR spectra, as Nujol mulls, were recorded on a Pye Unicam SP102S spectrometer. The ${ }^{31} P$ NMR were recorded on a Bruker WP80 at 32.8 MHz , with chemical shifts measured, relative to external $\mathrm{P}(\mathrm{OMe})_{3}$ in $\mathrm{CO}\left(\mathrm{CD}_{3}\right)_{2}$.

Preparation of $\mathrm{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PCy}_{3}\right)_{2}$ (1a)
1.00 g of $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ was dissolved in 75 ml of hexanes and 5 ml of CS_{2} added. Immediately a yellow-orange precipitate formed. The mixture was stirred for 15 min filtered and the product washed with hexanes (yield $0.79 \mathrm{~g}, 70 \%$).

Preparation of $\mathrm{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{P}^{t} \mathrm{BuPh}_{2}\right)_{2}$ (2a)
1.50 g of $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ [13] was dissolved in toluene and to it three equivalents of $\mathbf{P}^{t} \mathrm{BuPh}_{2}(5.13 \mathrm{~g})$ was added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 1 h . The solvents were removed under vacuum, 125 ml of hexanes was added and the solution was filtered off. To this solution 10 ml of CS_{2} was added; immediately a yellow precipitate formed. The solution was stirred for 30 min , and the product isolated by filtration and washed with hexanes (yield $2.73 \mathrm{~g}, 58 \%$).

Preparation of $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2}\left(\mathrm{P}^{t} B u P h_{2}\right)_{2}$
As above for 2 a except instead of adding CS_{2} the hexane solution was exposed to an atmosphere of CO for 20 min . A red-violet coloured precipitate $\mathrm{Pd}_{3}(\mathrm{CO})_{3^{-}}$ $\left(\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}\right)_{3}$ formed, which was filtered and washed with hexane. This was added to 20 ml of hexanes and 3 ml of CS_{2}. Immediately a yellow-orange precipitate formed, which filtered and recrystallised from $\mathrm{CS}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane (yield $2.39 \mathrm{~g}, 90 \%$).

Preparation of $P d_{2}\left(C S_{2}\right)_{2} L_{2}\left(L=P^{t} B u_{2} P h(3 a) ; P^{t} B u_{3}(4 b)\right)$
1.50 g of PdL_{2} was dissolved in 75 ml of hexanes and to it 5 ml of CS_{2} was added. Immediately a yellow precipitate formed. This was filtered and recrystallised from $\mathrm{CS}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes (yield $0.77 \mathrm{~g}, 70 \%$).

Reactions of $\mathrm{Pd}_{3}(\mathrm{CO})_{3} L_{3}$ with $\mathrm{CS}_{2}\left(L=P C y_{3}, P^{t} B u_{2} P h\right.$ and $\left.P^{t} B u_{3}\right)$
0.20 g of $\mathrm{Pd}_{3}(\mathrm{CO})_{3} \mathrm{~L}_{3}$ was added to 15 ml of hexanes and 2 ml of CS_{2}. Immediately a yellow-orange precipitate formed. This was stirred for 30 min and the products ($\mathbf{1 b}, \mathbf{3 b}$ or $\mathbf{4 b}$) were isolated by filtration (yield 90%).

The analytical data for compounds $\mathbf{1 - 4}$ are given in Table 1.
X-Ray study of $P d_{2}\left(\mu-C S_{2}\right)_{2}\left(P^{l} B u_{2} P h\right)_{2}$
Brownish-yellow crystals of $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2}\left(\mathrm{P}^{\mathbf{1}} \mathrm{Bu}_{2} \mathrm{Ph}\right)_{2}$ were obtaithed by recrystallization from CS_{2} /hexane mixtures. A photographic examination showed the crystals belonged to the monoclinic space group $P 2_{1} / c, C_{2 h}^{5}$, No. 14 [14]. Crystal data are presented in Table 2.

A crystal of equant habit was chosen for data collection and mounted on an Enraf-Nonius CAD4F diffractometer. Three standard reflections, monitored every 3.8 h during data collection, showed no decomposition had occurred. Details of the experimental conditions are summarized in Table 2. Eight crystal faces were identified as the forms $\{100\},\{010\}$ and $\{001\}$.

A total of 3218 reflections was measured. The recorded intensities were corrected for Lorentz and polarization effects and a standard deviation $\sigma(I)$ was assigned to each intensity (I), using the data reduction program of the SPD package [15]. The data were not corrected for absorption. Of the data collected 2071 unique reflections with $I>3 \sigma(I)$ were used in the solution and refinement of the structure.

The positional coordinates for the Pd atom were readily obtained from a three-dimensional Patterson synthesis. A series of difference Fourier syntheses and least-squares refinements revealed the positions of the remaining 18 non-hydrogen atoms.

The structure refinement [15], by full-matrix least-squares techniques on F, proceeded smoothly. Hydrogen atoms were included in the final cycles but not refined. Idealized positional coordinates for the H atoms were computed by assuming either $s p^{2}$ or $s p^{3}$ staggered geometries and $\mathrm{C}-\mathrm{H}$ bond distances of 0.95 and $1.0 \AA$ respectively. The refinement converged at $R_{1}=\Sigma| | F_{0}\left|-F_{\mathrm{c}} \| / \Sigma\right| F_{0} \mid=0.0323$ and R_{2} $=\left(\sum w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w F_{0}^{2}\right)^{1 / 2}=0.0385$ (2071 unique data and 172 variables).

TABLE 1
ANALYTICAL DATA FOR COMPOUNDS 1-4

Compound	Formula	Analysis (Found (calcd.)(\%))	
		C	H
$1 \mathbf{1}$	$\mathrm{C}_{37} \mathrm{H}_{66} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Pd}$	$\begin{gathered} 57.2 \\ (59.79) \end{gathered}$	$\begin{gathered} 8.9 \\ (8.96) \end{gathered}$
2a	$\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Pd}$	$\begin{aligned} & 58.3 \\ & (59.46) \end{aligned}$	$\begin{gathered} 5.5 \\ (5.70) \end{gathered}$
1b	$\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Pd}_{2}$	$\begin{gathered} 48.8 \\ (49.28) \end{gathered}$	$\begin{gathered} 7.2 \\ (7.20) \end{gathered}$
2 b	$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Pd}_{2}$	$\begin{gathered} 50.3 \\ (48.11) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.48) \end{gathered}$
3b	$\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Pd}_{2}$	$\begin{gathered} 44.2 \\ (44.50) \end{gathered}$	$\begin{gathered} 5.6 \\ (5.74) \end{gathered}$
4b	$\mathrm{C}_{26} \mathrm{H}_{54} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Pd}_{2}$	$\begin{gathered} 40.4 \\ (40.56) \end{gathered}$	$\begin{aligned} & 7.1 \\ & (7.09) \end{aligned}$

TABLE 2
CRYSTAL DATA AND EXPERIMENTAL CONDITIONS ASSOCIATED WITH DATA COLLECTION

Molecular formula	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{PS}_{2} \mathrm{Pd} F_{\mathrm{w}}=404.85$
System	Monoclinic
Space group	$P 2_{1} / c$
Cell constants	$a 10373(2) \AA$
	$b 13.684(1) \AA$
	$c 12.173(2) \AA$.
Cell volume	$\beta 94.04(7)^{\circ}$
Density (calculated)	$1723.6 \AA^{3}$
Z	$1.56 \mathrm{~g} \mathrm{~cm}^{-3}$
μ (Mo- K_{α})	4
Radiatıon	$13.7 \mathrm{~cm}^{-1}$
Wavelength (A)	$\mathrm{Mo}-K_{\alpha}$, graphite monochromatized
Temperature (${ }^{\circ} \mathrm{C}$)	0.71073
Approximate crystal dimensions (cm)	23
Number and 2θ range of centered reflections	$0.021 \times 0.017 \times 0.009$
Data collected	$21,20<2 \theta<30^{\circ}$
Scan mode	$h k l$ and $h k \bar{l}$, for $0<2 \theta<50^{\circ}$
Scan width (deg.)	$\theta: 2 \theta$
Maxımum scan time (sec.)	0.80
Prescan rate (deg. mın ${ }^{-1}$)	75
Acceptance ratio $\sigma(I) / I$	11

TABLE 3
ATOMIC POSITIONAL AND THERMAL PARAMETERS (Estimated standard deviations are given in parentheses, and correspond to the least significant digit(s). Positional parameters are given as fractional coordinates. $B\left(\AA^{2}\right)=\left(\frac{4}{3}\right) \times\left[a^{2} B_{1,1}+b^{2} B_{2,2}+c^{2} B_{3,3}+a h(\cos \gamma) B_{1,2}+a c(\cos \beta) B_{1,3}+b c(\cos \alpha) B_{23}\right]$

Atom	x	y	z	$B\left(\AA^{2}\right)$
Pd	$0.08358(3)$	$0.00724(3)$	$0.34695(3)$	$2.135(6)$
$\mathrm{S}(1)$	$-0.1090(1)$	$-0.0313(1)$	$0.2486(1)$	$3.45(3)$
$\mathrm{S}(2)$	$0.1905(1)$	$0.0417(1)$	$0.5157(1)$	$2.97(3)$
P	$0.2515(1)$	$0.01872(9)$	$022072(9)$	$2.19(2)$
$\mathrm{C}(1)$	$-0.0948(5)$	$-0.0238(3)$	$0.3836(4)$	$2.44(9)$
$\mathrm{C}(11)$	$0.2312(5)$	$-0.0872(3)$	$0.1287(4)$	$2.6(1)$
$\mathrm{C}(12)$	$0.1777(5)$	$-0.1708(4)$	$0.1719(4)$	$3.3(1)$
$\mathrm{C}(13)$	$0.1647(6)$	$-0.2553(4)$	$0.1085(5)$	$4.1(1)$
$\mathrm{C}(14)$	$0.2026(7)$	$-0.2567(4)$	$0.0044(5)$	$4.8(1)$
$\mathrm{C}(15)$	$0.2529(6)$	$-0.1751(5)$	$-0.0403(5)$	$4.6(1)$
$\mathrm{C}(16)$	$0.2689(5)$	$-0.0908(4)$	$00223(4)$	$3.4(1)$
$\mathrm{C}(21)$	$0.4258(5)$	$0.0065(4)$	$0.2741(4)$	$3.8(1)$
$\mathrm{C}(22)$	$0.4306(5)$	$-0.0825(5)$	$0.3517(5)$	$4.3(1)$
$\mathrm{C}(23)$	$0.4690(6)$	$0.0961(5)$	$0.3399(5)$	$5.3(2)$
$\mathrm{C}(24)$	$0.5179(5)$	$-0.0135(5)$	$0.1849(5)$	$5.1(2)$
$C(31)$	$0.2239(6)$	$0.1328(4)$	$0.1356(4)$	$3.3(1)$
$\mathrm{C}(32)$	$0.3323(6)$	$0.1673(4)$	$0.0661(5)$	$4.7(1)$
$C(33)$	$0.1022(6)$	$0.1185(5)$	$0.0610(5)$	$4.8(1)$
$\mathrm{C}(34)$	$0.1975(8)$	$0.2149(4)$	$0.2171(6)$	$6.0(2)$

TABLE 4
SUMMARY OF ${ }^{31}$ P NMR AND IR SPECTROSCOPIC DATA

Complex	$\delta(31 \mathrm{P})^{a}$	${ }^{2} J(\mathrm{P}-\mathrm{Pd}-\mathrm{P})(\mathrm{Hz})$	$\left(\mathrm{CS}_{2}\right)\left(\mathrm{cm}^{-1}\right)$
$\mathbf{1 a}^{b}$	$41.04,25.99$	14.65	$1173,1161,620$
$\mathbf{2 a}^{b}$	$41.68,55.08$	20.14	$1170,1150,620$
$\mathbf{1 b}^{c}$	36.84		$1140,1120,1100$
$\mathbf{2 b}^{\text {c }}$	44.43		$1170,1150,1125,715$
$\mathbf{3 b}^{c}$	64.51		$1150,1135,1110,710$
$\mathbf{4 b}^{\text {c }}$	81.21		$1175,1150,1125$

${ }^{a}$ Chemical shifts are in ppm downfield from $\mathrm{H}_{3} \mathrm{PO}_{4} \cdot{ }^{h}{ }^{31} \mathrm{P}$ NMR spectra were recorded in CS_{2} solution at $-60^{\circ} \mathrm{C} .{ }^{c}{ }^{31} \mathrm{P}$ NMR spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CS}_{2}$ solution at $22^{\circ} \mathrm{C}$.

In the final cycle no shift exceeded 0.01 of its standard deviation. The error in an observation of unit weight is 1.09 electrons. A statistical analysis of R_{2} over various ranges of $\left|F_{0}\right|, \lambda^{-1} \sin \theta$ and reflection parities showed no abnormal trends. A total difference Fourier synthesis calculated from the final structure factors contained no features of chemical significance. Final positional and B thermal parameters for the non- H atoms are given in Table 3.

Supplementary material available. A weighted least-squares plane of the $\operatorname{PPd}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{PdP}$ core, hydrogen atom parameters, anisotropic thermal parameters and structure amplitudes as $10\left|F_{0}\right|$ vs. $10\left|F_{\mathrm{c}}\right|$ have been deposited *.

Results

Preparation of the CS_{2} complexes

$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ is known to react with CS_{2} in refluxing diethyl ether to give the $\eta^{2}-\mathrm{CS}_{2}$, monomeric complex $\operatorname{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ [2] (type a). We have found that $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ and $\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{BuPh}_{2}\right)_{n}$ [16] also react with CS_{2}, in hexanes at $23^{\circ} \mathrm{C}$, to precipitate the analogous compounds $\mathrm{Pd}\left(\mathrm{CS}_{2}\right) \mathrm{L}_{2}\left(\mathrm{~L}=\mathbf{P C y}_{3}, \mathbf{1 a} ; \mathbf{P}^{\prime} \mathrm{BuPl}_{2}, \mathbf{2 a}\right)$. Complexes 1a and 2a, unlike $\mathrm{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$, react further when dissolved in CS_{2} eliminating a phosphine ligand and forming the doubly- CS_{2} bridged, dimeric species $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{PCy}_{3}, \mathbf{1 b} ; \mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}, \mathbf{2 b}\right)$. The $\eta^{2}-\mathrm{CS}_{2}$ monomeric complexes were not observed in the reaction of $\mathrm{PdL}_{2}\left(\mathrm{~L}=\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph} ; \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)$ with CS_{2} in hexane but rather the dimeric complexes $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{P}^{t} \mathrm{Bu}_{2} \mathrm{Ph}, \mathbf{3 b}\right.$; $\left.\mathrm{P}^{t} \mathrm{Bu}_{3}, 4 b\right)$ formed immediately. Reaction of the trinuclear clusters $\mathrm{Pd}_{3}(\mathrm{CO})_{3} \mathrm{~L}_{3}\left(\mathrm{~L}=\mathrm{PCy}_{3}, \mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}\right.$, $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$) with CS_{2}, in hexanes, results in immediate formation of the $\mu-\mathrm{CS}_{2}$ dimers $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{~L}_{2}(\mathbf{1 b}, \mathbf{2 b}, \mathbf{3 b}, \mathbf{4 b}$, respectively).

The products have been characterized by IR and ${ }^{31} \mathrm{P}$ NMR spectroscopy, elemental analysis and in the case of 3b X-ray crystallography. The instability of 1a and 2a in solution made it difficult to obtain analytically pure samples. Spectroscopic data are presented in Table 4.

[^0]The complexes exhibit strong infrared absorptions in the regions of 620 to 720 cm^{-1} and 1100 and $1175 \mathrm{~cm}^{-1}$ which are typical of both $\eta^{2}-\mathrm{CS}_{2}$ complexes [2,17] and $\mu-\mathrm{CS}_{2}$ complexes [4.5]. Previous researchers have assigned these regions to the $\mathrm{M}-\mathrm{C}-\mathrm{S}$ ring and exo-($\mathrm{C}=\mathrm{S}$) vibrations respectively [17]. As a general observation complexation of the exo-S atom in monomeric $\eta^{2}-\mathrm{CS}_{2}$ compounds is reflected in a slight lowering of the exo- $(\mathrm{C}=\mathrm{S})$ frequency and a raising of the frequency assigned to the in-ring vibration.

The observation of an $\mathrm{AX}{ }^{31} \mathrm{P}$ NMR spectrum for type a complexes and a single ${ }^{31} \mathrm{P}$ resonance in type \mathbf{b} is consistent with the assigned structures.

Reaction of $\operatorname{Pd}\left(\mathrm{CS}_{2}\right) L_{2}$ with CS_{2}

The complexes 1a and 2a were each dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CS}_{2}$ at $-60^{\circ} \mathrm{C}$ and their ${ }^{31} \mathrm{P}$ NMR spectra were monitored at $10^{\circ} \mathrm{C}$ interval (every 15 min) as the solutions were warmed to room temperature. Both complexes gave an AX spectrum, with narrow line widths, at $-53^{\circ} \mathrm{C}$.

The ${ }^{31} \mathrm{P}$ NMR spectrum of 2 a had reached coalescences at $-5^{\circ} \mathrm{C}$ and then sharped with increasing temperature giving a one line, fast exchange, spectrum at $10^{\circ} \mathrm{C}$. Resonances associated with $\mathbf{2 b}$ and free $\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}$ first began to appear at $-43^{\circ} \mathrm{C}$. The reaction to produce $\mathbf{2 b}$ proceeded with increasing temperature and was complete after 30 min at $23^{\circ} \mathrm{C}$. There were no observable intermediates.

At $-43^{\circ} \mathrm{C}$ a broadened AX spectrum was recorded for 1 a indicating the onset of a slow exchange process. However unlike 2a, coalescence was not observed for 1a. The broadened spectrum collapsed into the base line at $-23^{\circ} \mathrm{C}$. Resonances assigned to 1 b and $\mathrm{PCy}_{3} \cdot \mathrm{CS}_{2}$ appcared at $-13^{\circ} \mathrm{C}$ and continucd to grow in with increasing time and temperature.

Description of the structure of $\mathbf{3 b}$

Differences in the number and intensity of the 1100 to $1175 \mathrm{~cm}^{-1}$ IR active CS_{2} vibrations between the Pd and $\mathrm{Pt}[5,8]$ type b complexes led us to confirm the structure of the Pd dimeric complexes by a single crystal X-ray analysis of 3b. The crystal structure consists of discrete dimeric molecules for the closest intermolecular distance is $2.28 \AA$ between $\mathrm{C}(1)$ and $\mathrm{H}(13)(\mathrm{C}(13))$ in the equivalent position (x, $1 / 2-y, z$). A perspective view of the molecule together with the atom numbering scheme is given in Fig. 1. Selected intramolecular dimensions are present in Table 5.

The complex $\mathbf{3 b}$ possesses a crystallographically imposed centre of inversion. The two centrosymmetrically related $\mathrm{Pd}\left(\mathrm{P}^{\mathrm{P}} \mathrm{Bu}_{2} \mathrm{Ph}\right)$ fragments are held together by two doubly bridging CS_{2} moieties. Each CS_{2} group is π-bonded through a $\mathrm{C}=\mathrm{S}$ linkage to one metal atom and σ-bonded to the other through the exo-S atom resulting in a six-membered ring. A weighted least-squares plane calculation reveals the planarity of the $\mathrm{PPd}\left(\mathrm{CS}_{2}\right)_{2} \mathrm{PdP}$ core (largest deviation $0.107(1) \AA$).

The angles subtended at the Pd atom are consistent with a highly distorted square-planar coordination geometry. The Pd-P distance, 2.408(1) \AA, is longer than the value of $2.349(2) \AA$ found for the Pt analogue. This and other dimensions associated with the phosphine ligand are normal [5,18,19].

The $\mathrm{Pd}-\mathrm{C}(1)$ distances, $1.980(5) \AA$, is equivalent to the value $1.970(6) \AA$ found in the complex $\mathrm{Pt}_{2}\left(\mathrm{CS}_{2}\right)_{2}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}\right)_{2}$ [5], however the $\mathrm{Pd}-\mathrm{S}(1)$ bond length, 2.316(1) \AA, is significantly shorter than the distance observed in the related Pt complex,
2.337(2) \AA. The two Pd-S bond distances, 2.316(1) and 2.313(1) \AA, are indistinguishable as are the two $\mathrm{C}-\mathrm{S}$ bond lengths, $1.643(5)$ and $1.650(5) \AA$. All parameters associated with the CS_{2} ligand are comparable to those found not only for the Pt analogue [5], but also for the Pd and Pt monomeric complexes (type a) [3,19]. Thus the σ-bonding of the exo-S atom and the geometric requirements of a six-membered ring have no drastic affect on the geometry of the CS_{2} ligand.

Discussion

The reactions are summarized in Scheme 1, where $n=2,3$ or 4 depending on L. It is the steric bulk of the phosphine ligands which apparently controls the

Fig. 1. An ORTEP drawing of $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}\right)_{2}$ plotted as 50% probability thermal ellipsoids, with H-atoms omitted.

TABLE 5
SELECTED BOND DISTANCES (\AA) AND ANGLES (deg.)

Bond	Distance	Bond	Distance
$\mathrm{Pd}-\mathrm{P}$	$2.408(1)$	$\mathrm{C}(1)-\mathrm{S}(1)$	$1.643(5)$
$\mathrm{Pd}-\mathrm{C}(1)$	$1.980(5)$	$\mathrm{C}(1)-\mathrm{S}(2)^{\prime}$	$1.650(5)$
$\mathrm{Pd}-\mathrm{S}(1)$	$2.316(1)$	$\mathrm{P}-\mathrm{C}(11)$	$1.835(5)$
$\mathrm{Pd}-\mathrm{S}(2)$	$2.313(1)$	$\mathrm{P}-\mathrm{C}(21)$	$1.886(5)$
		$\mathrm{P}-\mathrm{C}(31)$	$1.884(5)$

Atoms	Angle	Atoms	Angle
$\mathbf{P}-\mathrm{Pd}-\mathrm{S}(1)$	$108.74(4)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)^{\prime}$	$135.9(3)$
$\mathrm{P}-\mathrm{Pd}-\mathrm{C}(1)$	$152.5(1)$	$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(11)$	$106.3(2)$
$\mathrm{P}-\mathrm{Pd}-\mathrm{S}(2)$	$103.30(4)$	$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(21)$	$119.6(2)$
$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{S}(1)$	$44.1(1)$	$\mathrm{Pd}-\mathrm{P}-\mathrm{C}(31)$	$108.4(2)$
$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{S}(2)$	$104.0(1)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$101.9(2)$
$\mathrm{Pd}-\mathrm{C}(1)-\mathrm{S}(2)^{\prime}$	$145.1(3)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$108.2(2)$
$\mathrm{C}(1)^{\prime}-\mathrm{S}(2)-\mathrm{Pd}$	$110.7(2)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$111.6(3)$

reaction. Monomeric $\operatorname{Pd}\left(\eta^{2}-\mathrm{CS}_{2}\right) \mathrm{L}_{2}$ complexes are not observed for the larger phosphines, $\mathrm{P}^{t} \mathrm{Bu}_{2} \mathrm{Ph}$ or $\mathrm{P}^{t} \mathrm{Bu}_{3}$. The type a complexes can be isolated for the smaller ligands, $\mathrm{PPh}_{3}, \mathrm{PCy}_{3}$ or $\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}$, however the latter two react quickly in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CS}_{2}$ to give the dimeric compounds $\mathbf{1 b}$ and $\mathbf{2 b}$. There is no correlation between basicity [20] and formation of b-type complexes. The fact that $\mathbf{1 a}$ is observed while " $3 \mathbf{a}$ " is not (even though PCy_{3} and $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}$ have the same cone angle [21]) we ascribe to the over-simplification in defining a phosphine ligand as a solid cone [21]. It has been shown that in trigonal planar complexes containing cas- $\mathrm{PR}_{2} \mathrm{Ph}$ ligand, the phenyl groups adopt a 'graphite-like' interaction forcing the R -groups to point directly towards the third coordination site [22]. Thus for type a complexes $\mathrm{P}^{\prime} \mathrm{Bu}_{2} \mathrm{Ph}$ would have a larger steric requirement than PCy_{3}. Equilibrium constants for the dissociation of phosphine in PdL_{n} complexes also indicate that PCy_{3} is a smaller ligand than $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2} \mathrm{Ph}$ [23].

The complex $\operatorname{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ is stable in solution although at temperatures higher than $60^{\circ} \mathrm{C}$ the P atom environments are exchanging in the ${ }^{31} \mathrm{P}$ NMR experiment [24]. By contrast 1a and 2a decompose in solution in the absence of CS_{2} and convert to the complexes $\mathbf{1 b}$ and $\mathbf{2 b}$ when CS_{2} is present. Variable temperature ${ }^{31} \mathrm{P}$ NMR of 1 a and 2 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CS}_{2}$, shows that the first process to occur on warming of a solution is one in which the P nuclear environments are interchanged. In the case of $\mathbf{1 a}$ the reaction to form the CS_{2} dimer $\mathbf{1 b}$ is complete before coalescence of the original 1a resonances occurs. However a coalescence temperature of approximately $-5^{\circ} \mathrm{C}$ was observed for 2 a as the reaction to prodwae $\mathbf{2 b}$ occurs more slowly. The PCy_{3} ligand is more basic and more sterically demanding than $\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}$. These two factors apparently offset each other and it could be the formation of $\mathrm{PCy}_{3} \cdot \mathrm{CS}_{2}$ which accelerates the convertion of $\mathbf{1 a}$ to $\mathbf{1 b}$.

The process by which the P spins are interchanged may be associated with either fluxionality of the CS_{2} ligand or exchange of the phosphine ligands. Free phosphine liberated during formation of the dimeric complexes may be involved in this process although $\operatorname{Pd}\left(\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ is also fluxional and does not spontaneously form a dimeric complex. There is evidence which suggests that the type b complex $\mathrm{Pd}_{2}\left(\mathrm{CS}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ does form in the presence of phosphine acceptors [8]. While the exchange process may be related to the basicity of the phosphine ligand, formation of type \mathbf{b} complexes appears to be related to the steric bulk of the phosphine ligands.

The known Ni - and $\mathrm{Pt}-\mathrm{CS}_{2}$ chemistry is consistent with our conclusions on the factors affecting the Pd system. The comparatively short metal-phosphorus bonds for first row transition metal elements would accentuate the phosphine ligands steric requirements for Ni complexes and this results in only type \mathbf{b} compounds forming $[1,4]$. The $\mathrm{Pt}-\mathrm{CS}_{2}$ chemistry exactly parallels the results found for Pd . Both \mathbf{a} and \mathbf{b} complexes have been prepared for PCy_{3}, while PPh_{3} gives only a type a compound and $\mathbf{P}^{\mathrm{t}} \mathrm{Bu}_{3}$ a type $\mathbf{b}[5,6,7]$.

Acknowledgements

We thank the University of Toronto and the Natural Sciences and Engineering Council of Canada for operating and equipment grants, and Johnson Matthey and Co. Ltd. for their loan of Pd salts.

References

1 M.G. Mason, P.N. Swepston and J.A. Ibers, Inorg. Chem., 22 (1983) 441, and ref. therein.
2 M.C. Baird and G. Wilkinson, J. Chem. Soc. A, (1967) 865.
3 R. Mason and A.I.M. Rae, J. Chem. Soc. A, (1970) 1767.
4 C. Bianchini, C.A. Ghilardi, A. Meli, S. Midollini and A. Orlandini, J. Chem. Soc. Chem. Comm., (1983) 753.

5 D.H. Farrar, R.R. Gukathasan and S.A. Morris, Inorg. Chem., in press.
6 J.M. Ritchey, M.C. Moody and R.R. Ryan, Inorg. Chem., 22 (1983) 2276.
7 J.M. Ritchey and M.C. Moody, Inorg. Chim. Acta, 74 (1983) 271.
8 R. Uson, J. Fornies and M.A. Uson, Inorg. Chim. Acta, 81 (1984) L27.
9 M. Field, O. Stelzer and R. Schmutzler, Inorg. Syn., 14 (1973) 4.
10 B.E. Mann, B.L. Shaw and R.M. Slade, J. Chem. Soc. (A), (1971) 2976.
11 B.H. Hoffmann and P. Schellenbeck, Chem. Ber., 100 (1967) 692.
12 S. Otsuka and T. Yoshida, J. Amer. Chem. Soc., 99 (1977) 2134.
13 T. Yoshida and S. Otsuka, Inorg. Syn., 19 (1979) 101.
14 International Tables for X-Ray Crystallography; Kynoch Press, Birmingham, England, 1969.
15 All computing was preformed on a DEC PDP-11/23 computer at the University of Toronto using the Enraf-Nonius SPD package.
$16 \mathrm{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}\right)_{n}$ was prepared by the addition of three equivalents of $\mathrm{P}^{\mathrm{t}} \mathrm{BuPh}_{2}$ per Pd however the complex was never isolated or analyzed.
17 I.S. Butler and A.E. Fenster, J. Organomet. Chem., 66 (1974) 161.
18 D.H. Farrar and N.C. Payne, J. Organomet. Chem., 220 (1981) 239.
19 T. Kashiwagi, N. Yasuoka, T. Ueki, N. Kasai, M. Kakudo, S. Takahashi and N. Hagihara, Bull. Chem. Soc. Jap., 41 (1968) 296.
20 C.A. Tolman, J. Am. Chem. Soc., 92 (1970) 2953.
21 C.A. Tolman, J. Am. Chem. Soc., 92 (1970) 2956.
22 D.H. Farrar and N.C. Payne, Inorg. Chem., 20 (1981) 821.
23 J.P. Collam and L.S. Hegedus, Principles and Applications of Organotransition Metal Chemistry, University Science Books, California, 1980, p. 58.
24 D.H. Farrar and R.R. Gukathasan, unpublished results.

[^0]: * See NAPS document no. 04235 for 26 pages of supplementary material. Order from NAPS $\%$ Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance in U.S. funds only $\$ 9.55$ for photocopies or $\$ 4.00$ for microfiche. Outside the U.S. and Canada add postage of $\$ 4.50$ for the first 20 pages, and $\$ 1.00$ for each page thereafter. $\$ 1.50$ for microfiche postage.

